abc

Development of a Turnkey H2 Fueling Station

DOE New Project Kick-off Meeting

David Guro 30 October 2001

Turnkey Fueling Station Development

Goal:

 To achieve commercial cost viability for a stand-alone, fully integrated, H2 Fueling Station based on reforming of natural gas.

Project Duration:

9 Quarters

Estimated Funding:

\$ 7.1 MM Program

Contractors:

- APCI
- Subcontractors: H2Gen, Penn State, Others possible

Scope of H2 Fueling Station Project

Direct Hydrogen Supply Modes

abc

Technical Concepts / Challenges

Reformer

- Use natural gas, tap water.
- Packaging, Fast-start capability, national and int'l codes

PSA

- New adsorbent and cycle development.
- Simple operation

Compression and Storage

Cost effective, quiet.

Dispenser

- Communication with vehicle. Interface with customer aesthetics.
- Code adherence, leak detection.

System

- Cost effective commercially viable
- Compact
- Safe

Project Timeline

Phase 1 – Conceptual Design and Economic Evaluation

- Subsystem Conceptual Designs Costed
- Reformer catalyst & equip., PSA, compression, storage, dispenser
- 4 Months

Phase 2 – Subsystem Development

- Development and Lab testing of All Components
- 9 Months

Phase 3 – System Deployment

- Scale-up & detailed engineering
- Fabrication & installation at Penn State
- Operation and Testing
- 6 Months Design & Fabrication
- 3 Months Delivery & Install
- 6 Months Operation/Testing

Development of H2 Fueling Station

Goals

- An Operational, Commercial H2 Fueling Station at Penn State
 - Safe, cost-effective
 - Early 2004 On-Stream
- We expect to have this available as a standard product for H2 fueling stations.
- We expect to apply this technology into other applications such as energy stations and power parks.